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ABSTRACT

Underwater images always present low-quality features such
as low contrast, blurred edges and color distortion, which
brings great challenges to high-level underwater vision tasks.
In this paper, a novel underwater image restoration method,
namely MonoUIR (Monocular Underwater Image Restora-
tion), is proposed, which is based on a more physical-accurate
imaging model compared to existing schemes. And with
the monocular depth estimation, MonoUIR has no depen-
dence on extra ranging equipment or specific shooting op-
erations. Experimental results demonstrate that MonoUIR
overwhelmingly outperforms other physical model-based
competitors. In addition, the Real-world Undersea Color
Board (RUCB) dataset is established, providing the ill-
conditioned underwater images collected in the East China
Sea and the corresponding high-quality references. To
our knowledge, this is the first full-reference underwa-
ter benchmark dataset collected entirely in a real-world
marine environment, which will further support the full-
reference evaluation of underwater image restoration ap-
proaches. The source code and the dataset are available at
https://TongJiayan.github.io/MonoUIR-Homepage.

Index Terms— Underwater image restoration, monocu-
lar depth estimation, full-reference, benchmark

1. INTRODUCTION

Due to the wavelength-dependent absorption and scattering
of light when propagating in seawater, underwater images
generally present low-quality features, including low con-
trast, blurred edges and color distortion, which significantly
increases the difficulty of high-level underwater computer vi-
sion tasks. To improve the usability of underwater visual data,
many restoration methods have already been proposed, aim-
ing to eliminate or partially eliminate the degradation of un-
derwater images, and obtain restored images that are close to
those captured in the air.

The existing model-based restoration methods generally
can not achieve satisfactory performance, which is manifested
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as inaccurate color restoration, incomplete deblurring and
poor generalization. One of the causes is that the underwa-
ter imaging model these methods depend on follows an ideal
assumption, in which the direct signal and the backscattering
signal are governed by the same uniform attenuation coeffi-
cient. Moreover, some existing restoration methods rely on
extra ranging equipment or multiple images captured from
different perspectives to obtain depth information. Conse-
quently, these methods can not work as expected for most
existing underwater images due to the lack of depth maps.

Another research gap is that the existing restoration meth-
ods generally can only be evaluated by non-reference assess-
ments [1, 2], which just take the inherent quality of the re-
stored image into accounts, such as contrast and color den-
sity, while hardly considering how close the restored image is
to the real-world scene. The leading cause is the lack of un-
derwater image datasets that can provide corresponding ref-
erences simultaneously.

As an attempt to fill in the aforementioned research
gaps to some extent, we propose a novel underwater image
restoration approach, namely MonoUIR (Monocular Under-
water Image Restoration). Compared with existing schemes,
it’s more physically accurate and doesn’t rely on any rang-
ing equipment. Besides, the first full-reference underwater
dataset, RUCB (Real-world Undersea Color Board), is estab-
lished, which can provide solid support to the evaluation of
underwater image restoration approaches. In summary, the
main contributions of this paper are summarized as follows,

• A novel underwater single image restoration method
MonoUIR is proposed. It utilizes a physical-accurate
and robust imaging model, in which the attenuation co-
efficients are signal-distinguished and adaptive to the
depth. Besides, by integrating the monocular depth es-
timation, MonoUIR has no dependence on extra rang-
ing equipment or specific shooting operations.

• The Real-world Undersea Color Board (RUCB) dataset
is established, consisting of ill-conditioned underwater
images collected in the East China Sea and the non-
degraded references. To our knowledge, this is the first
full-reference underwater dataset completely collected
in the real world.



• Both existing underwater image restoration methods
and our proposed MonoUIR are evaluated in a full-
reference manner, which is rare in previous work due
to the lack of data support. Actually, this is a more reli-
able solution to evaluate the performance of underwater
image restoration schemes.

2. RELATED WORK

Underwater image restoration has been a long-standing prob-
lem, with great progress made over the past decade. Here
we make a review on existing underwater image restoration
schemes and relevant public datasets.
Underwater image restoration. Existing underwater image
restoration methods mainly fall into two categories: physi-
cal model-based ones and data-driven ones. The physical
model-based methods [3–5] usually estimate the parameters
of the degradation model with observation data or various pri-
ors, aiming to reverse the degradation of underwater imaging.
These methods generally adopt the imaging model which as-
sumes the direct and the backscattering signals are governed
by the same uniform attenuation coefficient. This ideal as-
sumption will have a negative impact on the accuracy and ro-
bustness of restoration.

As another attempt on underwater image restoration, the
data-driven schemes [6–8] are inspired by deep learning tech-
niques and highly dependent on large-scale training datasets.
It’s worth mentioning that, to address the lack of paired train-
ing data, these schemes usually introduce GAN (Generative
Adversarial Network) to generate underwater images from
in-air images and depth pairings. Nevertheless, due to the
limitations of multiple possible outputs from GANs and the
gap between synthesized underwater images and real-world
ones, the robustness and the generalization capability of ex-
isting data-driven methods still fall behind model-based state-
of-the-art methods.
Underwater image datasets. Underwater image datasets
are significant for designing and evaluating underwater im-
age restoration methods. Several real-world underwater im-
age datasets [9–11] have been released, which were collected
in the real-world marine environment. However, the content
of these datasets is relatively monotonous. For example, the
seathru dataset [11] contains thousands of underwater images,
but only covers five different scenes. Moreover, since it is
quite challenging to obtain the non-degraded ground truth of
real-world underwater images,these datasets have no refer-
ence images provided. To sidestep this problem, Duarte et
al. [12] simulated the marine environment using milk in a
tank. Although in Duarte et al.’s dataset, paired underwa-
ter images and references are provided, there is still a non-
negligible gap between the real-world environment and the
simulated one. Overall, there is no full-reference underwater
dataset entirely collected from the real world yet.

3. PROPOSED METHOD

In this section, the workflow of MonoUIR will be presented
in detail. Firstly, the underwater imaging model will be in-
troduced in Sect. 3.1. Then, how to estimate the parameters
of the model will be described in the following three subsec-
tions. The pipeline of MonoUIR is illustrated in Fig. 1.
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Fig. 1. The pipeline of our MonoUIR. “⊖” and “⊘” indicate
the subtraction and division operation, respectively.

3.1. Underwater Imaging Model

Underwater imaging models usually regard the image signal
Ic as the combination of the direct signal Dc reflected from
objects and the backscattering signal Bc, which is the sig-
nal of ambient light scattered by marine particles. Different
from the underwater imaging model widely used by existing
model-based methods, which assumes the direct signal and
the backscattering signal are governed by the same uniform
attenuation coefficient, the model proposed in [13] claims that
the attenuation coefficient of the backscatter is different from
that of the direct transmission, and builds the physically valid
space of the attenuation coefficients with oceanographic tech-
niques. This model can be formulated as,

Ic = Dc +Bc

= Jc ∗ e−βD
c (vD)∗z +Ac ∗

(
1− e−βB

c (vB)∗z
) (1)

where Jc represents the restored image without degradation,
βD
c and βB

c represent the attenuation coefficients governing
the direct signal and the backscattering signal, respectively, z
represents the depth map, Ac denotes ambient light, and vec-
tor vD and vB represent the parameters on which βD

c and βB
c

depend, respectively, including equipment parameters and en-
vironmental ones that are usually difficult to obtain.

According to Eq. (1), we have to know all environmental
parameters as well as equipment ones so as to obtain the re-
stored image Jc, which is impractical for most cases. From
this point, in order to reduce the complexity of parameter es-
timation, we simplify the original physical imaging model
based on the assumption that the attenuation coefficient of



the direct signal is mostly determined by the depth informa-
tion. Consequently, compared with existing underwater im-
age restoration methods, MonoUIR is based on a physically
more accurate imaging model without losing feasibility. Its
improvement can be mainly summarized into two aspects: (1)
The direct signal and the backscattering signal depend on dif-
ferent attenuation coefficients. (2) The attenuation coefficient
of the direct signal is adaptive to the depth. Ultimately, the
model adopted by MonoUIR can be formulated as,

Ic = Dc+Bc = Jc∗e−βD
c (z)∗z+Ac∗

(
1− e−βB

c ∗z
)

(2)

3.2. Depth Estimation

To eliminate the dependence on ranging equipment or mul-
tiple images, MonoUIR utilizes the monocular depth estima-
tion and then scales the depth map with the maximum visible
distance to obtain the absolute depth map. This strategy en-
ables MonoUIR to perform restoration with only one RGB
underwater image, and be applicable to more cases.

In MonoUIR, the outdoor monocular depth estimation al-
gorithm [14] is adopted. Based on the pre-trained model
on the KITTI dataset [15], we further fine-tune the model
using two underwater RGBD datasets, seathru [11] and
SQUID [10], to make the model more suitable for underwater
scenarios. A typical sample of the estimated depth map of our
scheme is illustrated in Fig. 2. From the figure, it can be seen
that the depth map estimated by our monocular pipeline can
achieve comparable accuracy with the ground truth.

Underwater Image (a) (b)

Fig. 2. The depth map (a) provided by RGBD dataset seathru
[11] and (b) estimated by our monocular pipeline.

3.3. Backscattering Estimation

The estimation of the backscattering signal relies on the as-
sumption [13] that the image intensity of black or completely
shaded areas is entirely determined by the backscatter since
there is no reflected light from the object itself. Based on this
assumption, our backscattering estimation algorithm can be
summarized as follows.

Firstly, ten equally spaced depth intervals are partitioned
according to the upper and lower bounds of the depth map.
Next, all pixels are grouped into ten sets ω1,ω2, . . . ,ω10, in
which the depth of the pixels in ωi is in the ith depth interval.

Then, the pixels whose average intensity of RGB channels
is at the minimum of 1% on ωi are picked to form the set ϕi.
And we define Φ = {ϕ1,ϕ2, . . .ϕ10}, where the pixels do

not have any reflected signal according to the above assump-
tion, that is, Dc(Φ) ≈ 0. Based on this prior, pixels in set
Φ are used to fit the backscattering signal via non-linear least
square optimization. The problem can be formulated as,

min
Ac,βB

c

∥∥∥B̂c(Φ)− Ic(Φ)
∥∥∥
2

(3)

where B̂c is defined as,

B̂c = Ac ∗
(
1− e−βB

c ∗z
)

(4)

In addition, we found that for the fitting in the green and
the blue channel, the aforementioned non-linear model per-
forms well, while for the red channel, the linear model is bet-
ter, which is given as,

B̂c = Ac ∗
(
1− βB

c ∗ z
)

(5)

3.4. Transmission Map Estimation

From Eq. (2), with the estimated Bc, the restoration problem
can be converted to the estimation of the transmission map
T c, which is given as,

T c = e−βD
c ∗z (6)

The direct signal Dc is actually the reflected signal Jc

after the attenuation of T c. Inspired by retinex-based illumi-
nation estimation, the estimation of T c can be simplified as
the estimation of the illuminant map between the lens and the
scene. In our implementation, the local space average color is
calculated, and the steps can be summarized as follows.

To estimate the local space average color lc(x) of the
pixel x in channel c, the first step is finding its neighborhood
set N e(x), which can be described as,

N e(x) = {x′ | ∥z(x)− z (x′)∥ ≤ ϵ} (7)

where z (x) is the depth of x, and ϵ is a constant threshold.
Then, lc(x) can be estimated iteratively by,

l′c(x) =
1

|N e(x)|
∑

x′∈Ne(x)

lc (x
′) (8)

lc(x) = Dc(x) ∗ (1− p) + l′c(x) ∗ p (9)

where lc(x) is initialized to zero, p controls how strong lc(x)
is affected by its neighbours. Next, T c can be approximated
as lc. Then, with the estimated T c, the rough estimation β̂D

c

of the attenuation coefficient βD
c can be given as,

β̂D
c = − lnT c

z
(10)

To further refine the estimation of βD
c , the dependence

between βD
c and the depth map z is introduced in MonoUIR.



And the binomial exponential model is employed according
to our data analysis. The problem is formulated as,

βD
c = a ∗ eb∗z + c ∗ ed∗z (11)

min
a,b,c,d

||βD
c − β̂D

c ||2 (12)

4. RUCB DATASET ESTABLISHMENT

Since it is challenging to simultaneously obtain a real under-
water image and the corresponding ground truth of the same
scene, researchers either obtain paired degraded images and
references via synthetic techniques or collect them from man-
ually built test tanks. By contrast, our full-reference dataset,
RUCB, was collected completely in the real-world marine en-
vironment, allowing our RUCB to characterize underwater
images more authentically compared to artificial datasets.

The standard color board, which contains 6 gray-scale
patches and 18 colored ones, is utilized to be photographed
both in the air and in various underwater environments. In
this way, the color mapping relationship between the under-
water images and the corresponding references can be estab-
lished, which offers solid data support to the full-reference
evaluation of the underwater image restoration schemes.

We collected underwater images from nine sites near
the geographic coordinates (N29.483, E124.033) in the East
China Sea. In order to collect underwater images at different
depths, we fixed the color board and the water-proof camera
on the same pole at distances of 0.5m, 1.0m, and 1.5m, re-
spectively. Then we moved the pole down slowly until it was
about 20 meters below the sea surface and captured under-
water images with varying color tones produced by changing
lighting. Images were all captured under natural light in the
daytime between Jul. 31 and Aug. 3, 2021.

Finally, more than 20 videos were captured, covering a
wide range of diversities on illuminations, depths of fields,
blurring degrees, and color casts. We then cropped videos
at intervals of 100 frames and filtered out the images whose
color board is invisible. As a result, 2259 underwater images
with noticeable differences were picked and paired with the
corresponding reference images to establish RUCB dataset.
To the best of our knowledge, this is the first full-reference
underwater image dataset collected entirely in the real world.

5. EXPERIMENTAL RESULTS

5.1. Traits of Underwater Image Datasets

To more intuitively illustrate the advantages of our RUCB
dataset compared with existing competitors, in Table 1, we
summarize the characteristics of them from three aspects: the
scale of the dataset, the acquisition way of underwater images
and that of non-degraded references. From the table, it can
be seen that RUCB is the largest one among all counterparts.

Table 1. Traits of underwater image datasets.
Dataset Scale Underwater Images References

UCCS [9] 300 real-world /
UIEB [16] 890 real-world + sythetic sythetic

SQUID [10] 41 real-world /
seathru [11] 1157 real-world /

TURBID [12] 300 test tank test tank
RUCB (Ours) 2259 real-world real-world

Moreover, it is also the only full-reference underwater image
dataset collected entirely in the real-world environment.

5.2. Fitting Effectiveness

As aforementioned, for the backscattering estimation, the
non-linear model performs satisfactorily in the green and blue
channels, while for the red channel, the linear model will be
better. Besides, as discussed in Sect. 3.4, the binomial expo-
nential model is matched for the transmission map estimation.
To qualitatively verify our claim, we provide the fitting results
of three typical underwater images between the backscatter-
ing signal and the depth in Fig. 3. And Fig. 4 illustrates the
relationship between the attenuation coefficient of the direct
signal and the depth. From the results, our strategy is corrob-
orated to be reasonable and effective.

B B B

Fig. 3. The fitting results of the relationship between the
backscattering signal and the depth in three typical samples.

Fig. 4. Illustration of the relationship between the attenuation
coefficient of the direct signal and the depth. From (a)∼(c),
the results for R, G, and B channels are given, respectively.

5.3. Comparison with the State-of-the-art Methods

In this subsection, we compare the performance of MonoUIR
with five representative model-based restoration methods, in-



Table 2. Non-reference quantitative comparison results in
terms of the average UCIQE and UIQM on the whole dataset.

Method UCIQE↑ UIQM↑
UIEB UCCS SQUID UIEB UCCS SQUID

DCP [17] 1.289 0.700 0.560 1.886 1.611 0.691
UDCP [3] 2.575 1.720 2.376 1.600 1.763 0.812

Li et al. [18] 1.617 1.095 0.770 2.200 2.461 1.009
IBLA [19] 1.426 0.445 / 1.381 1.467 /
ULAP [20] 1.437 0.767 0.570 1.939 2.199 0.973

MonoUIR(Ours) 2.865 1.950 2.410 1.961 2.488 1.266

cluding DCP [17], UDCP [3], Li et al. [18], IBLA [19], and
ULAP [20]. For a fair comparison, the results of other meth-
ods were all generated by the official implementations.

Non-reference assessment on public datasets. In this
part, three public underwater datasets, including UIEB [16],
UCCS [9] and SQUID [10], were employed to evaluate the
effectiveness of MonoUIR. Qualitative results are illustrated
in Fig. 5. It can be observed that DCP [17], UDCP [3],
IBLA [19] and ULAP [20] can only partially eliminate blur
and color distortion, while Li et al. [18] overcompensates the
attenuation of the red channel, resulting in an inharmonious
red hue. By contrast, our MonoUIR produces finer textures
and more natural colors, making the restored images closer to
the real-world scene.

Input DCP [3] UDCP [4] Li et al. [18] IBLA [19] ULAP [20] Ours

Fig. 5. Qualitative comparison results on public underwater
datasets. The images in the first three rows are from the UIEB
[16] dataset, followed by two rows from the UCCS [9] dataset
and the last row from the SQUID [10] dataset.

To further quantitatively compare the performance of
these restoration methods, two commonly used non-reference
evaluation metrics, UCIQE [1] and UIQM [2], were calcu-
lated, and the results are summarized in Table 2. It can be
seen that MonoUIR outperforms other compared methods by
a large margin in terms of non-reference assessment.

Full-reference assessment on RUCB dataset. Based on
our RUCB dataset, we further evaluated the color restoration
performance of MonoUIR and other competing methods in a
full-reference manner. The qualitative results are given in Fig.

6, where we can see that the colors restored by our MonoUIR
are the closest to the reference at all tested depths. To quanti-
tatively measure the deviation between the restored color and
the ground truth, the CIEDE1976 chromatic aberration was
employed as the metric. Table 3 reports the average chro-
matic aberration between the restored color and the reference
captured in the air. It can be seen that MonoUIR has an over-
whelming advantage compared with other counterparts at the
depth of 0.5m and 1.0m. For images at the depth of 1.5m,
although our MonoUIR is only slightly superior to Li et al.’s
method [18], we found that this is mainly due to the over-
compensation for red of Li et al.’s scheme [18], which makes
it perform relatively well on the red-dominated color blocks.
It can also be confirmed by Fig. 6. In summary, MonoUIR
performs much better than other competitors in terms of full-
reference assessment.

Input DCP [3] UDCP [4] Li et al. [18] IBLA [19] ULAP [20] Ours Groud-truth

Fig. 6. Qualitative comparison on the RUCB dataset. The first
image was photographed at the depth of 0.5m, followed by
two images taken at the depth of 1.0m and 1.5m, respectively.

6. CONCLUSION

In this paper, we proposed a novel underwater image restora-
tion solution, namely MonoUIR. Compared with existing
methods, our MonoUIR employs a more physical-accurate
and robust imaging model, in which the attenuation coef-
ficients are signal-distinguished and adaptive to the depth
of field. By integrating the monocular depth estimation,
MonoUIR does not rely on any ranging equipment or specific
shooting operations. Extensive experiments have demon-
strated that MonoUIR achieves the best performance among
all competitors both qualitatively and quantitatively. Fur-
thermore, we established the first full-reference underwater
dataset, RUCB, which was collected entirely in the real-world
marine environment. It will offer solid data support to the
full-reference assessment on the performance of underwater
image restoration methods.
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Table 3. Full-reference quantitative comparison results in terms of the average CIEDE1976(↓) on the whole RUCB dataset.
Color Depth=0.5m Depth=1.0m Depth=1.5m
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